- E content for students of patliputra university
- B. Sc. (Honrs) Part 1Paper 1
- Subject Mathematics
- Title/Heading of topic: Definition and example
- of partial and total order relation
- By Dr. Hari kant singh
- Associate professor in mathematics

Partial orderings

[Def] A relation R on a set S is called partial ordering or partial order it is is reflexive, antisymmetric, and transitive.

A set S together with a partial ordering R is called poset (partially ordered set) denotation: (S,R)

Members of S are called *elements* of the poset.

Example: "greater than or equal" relation (\geq) is a partial ordering on the set of integers. note that R is \geq

reflexivity: $a \ge a$, $\forall a \in \mathbf{Z}$, hence $(a,a) \in R$ or aRa *transitivity*: if $a \ge b$ and $b \ge c$, then obviously $a \ge c$, $\forall a,b,c \in \mathbf{Z}$. Hence if $(a,b),(b,c) \in R$ then $(a,c) \in R$ antisymmetry: if $a \ge b$ and $b \ge a$, then obviously a = b

Convention:

In different *posets*, different symbols are used for partial ordering $(\leq, \geq, \supseteq, \subseteq, |)$.

The notation \leq is used to denote that $(a,b) \in R$ in an arbitrary poset (S,R)

Note that < doesn't stand for "less than or equals" relation. It denotes the relation in **any** poset.

[Def] The elements a and b of poset (S, \leq) are called comparable is either a \leq b or b \leq a. Otherwise they are called incomparable.

Example: In the *poset* (\mathbf{Z}^+ , |), are the given pairs of integers comparable? a) 2 and 8 2 and 8 are comparable because 2 | 8 b) 21 and 7 21 and 7 are comparable because 7 | 21 c) 5 and 13 5 and 13 are incomparable because neither 5 | 13 nor 13 | 5

The adjective *partial* is used to describe partial orderings because pairs of elements may be *incomparable*.

When every two elements of the set are comparable, the relation is called a *total ordering*.

[Def] If (S, \leq) is a poset and every two elements are comparable, S is called *totally ordered* (*linear ordered*) set, and \leq is called a *total order* (*liner order*)comparable

A totally ordered set is also called a *chain*.

Example 2: The poset (S, |) is not totally ordered. For example 5 / 13 and 13 / 5, i.e. 5 and 13 are incomparable.

[Def] (S,≼) is a *well-ordered set* if it is a *poset* such that ≼ is a *total ordering* and every non-empty subset of S has at least one element.

Examples:

- 1) the set of of integers Z, with the usual \leq ordering, is *not well-ordered*, because the set of negative integers is a subset of Z, but doesn't have the smallest element.
- 2) The set of positive integers Z^+ , with the usual \leq ordering, is *well-ordered*.